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Disclaimer

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other authorized documents.

Disposition

Destroy this report when no longer needed. Do not return it to the
originator.
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PREFACE

The work described in this report was authorized under project
1L162622A554-C, Research in Aerosol/Obscuration Science. This work was started in

January and completed in June 1981.

Reproduction of this document in whole or in part is prohibited except
with permission of the Commander/Director, Chemical Systems Laboratory, ATTN:

DRDAR-CLJ-R, Aberdeen Proving Ground, Maryland 21010. However, the Defense
Technical Information Center and the National Technical Information Service are
authorized to reproduce the document for United States Government purposes.
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EXTINCTION BY AEROSOL CLOUDS OF NONSPHERICAL

PARTICLES AT ARBITRARY WAVELENGTHS

1. INTRODUCTION

Most aerosol clouds consist of a polydispersion of particles.

Distributions in size greatly simplify extinction spectra of clouds by averag4ing out

the size-dependent extinction resonance peaks of individual particles. If the

aerosol particles are not liquid, then they can be nonspherical and have a

collection of orientations, surface irregularities, or a shape distribution, all of

which serve to further average out narrow extinction resonance peaks. What remains

of the extinction spectra may be treated by two limit theories; the geometric optics

limit and the Rayleigh limit. In the geometric optics limit, extinction is governed

by shape and size, independent of complex refractive index. In the Rayleigh limit

extinction by an absorbing particle is governed by shape and complex refractive

index, independent of size.

If the particles are convex, then the shape and size dependence in the

geometric optics limit takes the form of a direct proportionality between extinction

and surface area per unit volume. The Rayleigh ellipsoidal theory describes

extinction by a wide variety of particle shapes represented by elliposoids. For

example, high aspect ratio prolate spheroids, ellipsoids of revolution, can be used

to represent fibers, and high aspect ratio oblate spheroids can be used to represent

disks or flakes reasonably well.

2. DISCUSSION OF THEORY

The extinction coefficient, a, defines the beam transmittance, T, through

a cloud as a function of its concentration, c, and pathlength 1. A convenient set

of consistent units puts the pathlength in meters, the concentration in grams per

cubic meter, and the extinction coefficient in square meters per gram of material.

-aclT -e (1)

The extinction coefficient depends upon the geometric cross section, G, of a mass of

material pV, having extinction efficiency factor, Q. These must be averaged over

particle size, w, and solid angle, Q, to get an average extinction coefficient to

represent the complete cloud.

a- A(& lw (2)

Assuming that the angular average of the product GQ is equal to the product of the

averages and that the average efficiency factor is equal to two,

a - 2 40 S (3)
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For convex particles it is well known that the geometric cross section averaged over
all angles is equal to one-fourth the surface area, S.

1 (4)

Values of surface area per unit volume appear in table I for four typical shapes.
These values for monodispersions appear in the first column, while the corresponding
values for log normal polydispersions, having geometric standard deviations, a, and
number averaged dimensions subscripted n, appear in the second column. All

dimensions are in microns when the density is in grams per cubic centimeter.

Table 1. Surface Area Per Unit Volume
for Randomly Oriented Particles

Shape Monodisperse Polydisperse

-5 2

Sphere (r - radius) 3 r •

n

-5 26. 6 - 2 (lno)

Cube (a - edge) a a •
n

-1 22 2-' n)2

Flake (t - thickness) 2 2 e
t t

n

-3 22 2 2 (lna)

Filament (r - radius) 2 2e
r r

n

As these particles become smaller, they eventually become Rayleigh
particles, the exact particle volume of transition depending upon shape and complex
refractive index. Once this transition occurs, the extinction efficiency factor can
no longer be considered as a constant equal to two, but instead becomes size
dependent in such a way that it exactly cancels out the size dependence of the
surface area per unit volume, resulting in a size-independent extinction coefficient
so long as the particle is absorbing. Even if the particle's complex refractive

index has a relatively small imaginary component, absorption will dominate over

6
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scatter at longer wavelengths because absorption efficiency factors have an explicit
inverse wavelength dependence, while scatter eficiency factors have an explicit
inverse fourth-power wavelength dependence. When the complex refractive index does
not change rapidly with wavelength, the inverse wavelength dependence appears
directly in the spectra for an absorbing particle, just as the inverse fourth-power
wavelength dependence appears in the spectra for a dielectric particle. On the
other hand, there will be peaks in the extinction spectra in wavelength regions of
anomolous dispersion.

A theory treating nonspherical Rayleigh particles has been in existence
since before the turn of the century and was developed by Rayleigh to predict the
optical properties of small elliposoidal particles. Gans extended the theory to
randomly oriented spheroids, elliposoids of revolution. The spheroid is a
particularly valuable yet simple shape with the flexibility of predicting everything
from rods, in the limit of high aspect ratio prolate spheroids, to discs, in the
limit of high aspect ratio oblate spheroids. The extinction coefficient for an
absorbing randomly oriented spheroid is

83  r 1 2 2a -1 Im -_n_ 2 (1- n2+ (5)

3X m 41 + (n2-1)P 4% + (n2- 1) (4-P)/21

where P is the depolarization factor for the one unequal axis, n is the complex
refractive index, and X is the wavelength.

3. EXPERIMENTAL VERIFICATION

Aerosols are produced from powders by means of a nozzle which aspirates
particles into a shear field produced by a sonic flow of air. This shear field has
been sufficient to deagglomerate the particles without grinding individual particles
against one another, as would occur in an air mill, to produce particles smaller
than those originally manufactured. This stream of deagglomerated particles is
injected into a 6-cubic-meter chamber, and the transmittance is measured using a
Barnes Radiometer to continuously scan wavelengths throughout the mid infrared. In
addition, the transmittance is measured at two laser lines, one in the visible and
another in the near infrared. Filter samples of aerosol material are collected to
determine mass concentrations and then, with the pathlength known, extinction
coefficient spectra are calculated. This procedure has been used to produce the
spectra in figures 1 and 2, where subsequent scans taken at 5-minute intervals lie
at progressively higher extinction values. In figure 1 a graphite flake powder
having a greater thickness than the graphite flake in figure 2 produced a flat
spectra predicted for the averaged resonance region. The spectral scans in figure 1
made at later times represent progressively thinner flakes, as the thicker flakes
fall out of the air first. In figure 2 the sequential scans are clumped together
because the average flake thickness is smaller and should require more time to fall
then those in figure 1. If the time required to fall is tripled, then the spectra
in the second figure would be separated by only one-third the distance in the first
figure, for example. This of course ignores the effect of initial delay due to
falling through the vertical distance above the beam.
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In figure 2, the transition between flat and Rayleigh inverse wavelength
spectra occurs at wavelengths around 5 microns. This occurs in figure 2, but not in

figure 1, for two reasons. First, the flake particles in figure 2 are nearly half

the thickness of those in figure 1. Second, the major flake dimensions in figure 2

are only about a tenth those in figure 1, so that the transition at a fixed

thickness would occur at shorter wavelengths due to the smaller aspect ratio.

4. CONCLUSION

Extinction spectra for a collection of particles in a cloud have been
demonstrated to be either flat, in the case of larger particles, or to have

structure superimposed onto an inverse wavelength dependence, in the case of smaller

particles. Flat spectra occur as a result of the superposition of numerous,

individual particle-resonant structure spectra where the particles have a variety of

sizes and orientations, both of which influence the wavelength position of resonant

peaks. Smaller particle spectra is structured where refractive index changes take

place rapidly with wavelength. An underlying inverse wavelength dependence appears

in small, absorbing particle spectra because the extinction efficiency factor has
such explicit dependence. The transition wavelengths lying between the short

wavelength, flat and longer wavelength, Rayleigh-structured spectral regions are

determined by particle size and shape, which move the plateau up and down, as well

as by the refractive index and aspect ratio, which move the Rayleigh spectra up and

down. Analytic expressions were given for a variety of shapes, both monodisperse

and polydisperse, outside the Rayleigh region. An analytic expression was also

given for the spheroid in the Rayleigh region.
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